How can one obtain (5.12) from (5.11)?
The relation $$\tag{5.11} \left( \mathbf{a} \times \mathbf{b}\right) \cdot \left( \mathbf{c} \times \mathbf{d}\right) = \left( \mathbf{a} \cdot \mathbf{c}\right) \left( \mathbf{b} \cdot \mathbf{d}\right) - \left( \mathbf{a} \cdot \mathbf{d}\right) \left( \mathbf{b} \cdot \mathbf{c}\right) $$ is called the Identity of Langrange. From ($5.11$) follows $$\tag{5.12} \left(\mathbf{a} \times \mathbf{b} \right) \times \mathbf{c} = \left(\mathbf{a}\cdot \mathbf{c} \right)\mathbf{b} - \left( \mathbf{b}\cdot \mathbf{c} \right)\mathbf{a} $$ Can someone give a hint?