what is your $(\epsilon, \delta)$ definition for a limit of a multi variable function??
– Jan 28 '20 at 15:15
1 Answers1
2
Hint: using
$$ \bigg|\frac{\sin x}{x}\bigg|\le1$$
one has
$$ \bigg|\frac{e^y\sin x}{x}-1\bigg|=\bigg|\frac{(e^y-1)\sin x+\sin x-x}{x}\bigg|\le|e^y-1|+\bigg|\frac{\sin x}{x}-1\bigg|.$$
Then using this for
$$\lim_{x\to0} \frac{\sin x}{x}=1$$
one will get $\delta$ for $\epsilon>0$.