Consider the viscous conservation law \begin{equation} u_t+F(u)_x-au_{xx}=0,\quad\text{in }\mathbb{R}\times (0,\infty),\quad(1) \label{3-1} \end{equation} where $a>0$ and $F$ is uniformly convex.
(a). Show $u$ solves above PDE if $u(x,t)=v(x-\sigma t)$ and $v$ is defined implicitly by the formula $$ s=\int_{c}^{v(s)} \frac{a}{F(z)-\sigma z+b} d z \quad(s \in \mathbb{R}), $$ where $b$ and $c$ are constants.
(b). Demonstrate that we can find a traveling wave satisfying $$ \lim\limits_{s\rightarrow-\infty}v(s)=u_l,\lim\limits_{s\rightarrow \infty}v(s)=u_r $$ for $u_l>u_r$, if and only if $$ \sigma=\frac{F(u_l)-F(u_r)}{u_l-u_r}. $$
(c). Let $u^\varepsilon$ denote the above traveling wave solution of (1) for $a=\varepsilon$, with $u^\varepsilon(0,0)=\frac{u_l+u_r}{2}$. Compute $\lim\limits_{\varepsilon\rightarrow 0}u^\varepsilon$ and explain your answer.
My try:
(a). It is easy to check $u$ solve the PDE.
(b). By definition of $v$, we have $$ F(v(s))-\sigma v(s)+b=av'(s). $$ If we have $v'(\pm\infty)=0$, then $$ F(u_l)-\sigma u_l+b=0=F(u_r)-\sigma u_r+b $$ which implies $\sigma=\frac{F(u_l)-F(u_r)}{u_l-u_r}$. But I don't know how to show that $v'(\pm\infty)=0$.
(c). I have no much idea about it.