I find back your first angle but the second one is indeed in disagreement with your $15.86°$...
The following Matlab program that has allowed me to draw the figure and obtain the angles (think to scroll it) uses classical formulas with cross product and dot product :
%Pentakis Icosidodecahedron
% http://dmccooey.com/polyhedra/PentakisIcosidodecahedron.txt
clear all;close all;hold on;axis equal;
C0 = sqrt(5 * (5 - 2 * sqrt(5))) / 5
C1 = sqrt(10 * (5 - sqrt(5))) / 10
C2 = (6 * sqrt(5) + sqrt(2 * (85 - sqrt(5))) - 16) / 19
C3 = sqrt(10 * (5 + sqrt(5))) / 10
C4 = (7 - 5 * sqrt(5) + sqrt(2 * (125 + 41 * sqrt(5)))) / 19
C5 = sqrt(10 * (5 - sqrt(5))) / 5
T=...
[[0.0, 0.0, C5];[0.0, 0.0, -C5];[ C5, 0.0, 0.0]
[-C5, 0.0, 0.0];[0.0, C5, 0.0];[0.0, -C5, 0.0]
[ C2, 0.0, C4];[ C2, 0.0, -C4];[-C2, 0.0, C4]
[-C2, 0.0, -C4];[ C4, C2, 0.0];[ C4, -C2, 0.0]
[-C4, C2, 0.0];[-C4, -C2, 0.0];[0.0, C4, C2]
[0.0, C4, -C2];[0.0, -C4, C2];[0.0, -C4, -C2]
[ C0, C1, C3];[ C0, C1, -C3];[ C0, -C1, C3]
[ C0, -C1, -C3];[-C0, C1, C3];[-C0, C1, -C3]
[-C0, -C1, C3];[-C0, -C1, -C3];[ C3, C0, C1]
[ C3, C0, -C1];[ C3, -C0, C1];[ C3, -C0, -C1]
[-C3, C0, C1];[-C3, C0, -C1];[-C3, -C0, C1]
[-C3, -C0, -C1];[ C1, C3, C0];[ C1, C3, -C0]
[ C1, -C3, C0];[ C1, -C3, -C0];[-C1, C3, C0]
[-C1, C3, -C0];[-C1, -C3, C0];[-C1, -C3, -C0]];
for k=1:42
T(k,:)=T(k,:)/norm(T(k,:));%all points are now on the (unit) sphere !
end;
n=@(p,q,r)(cross(T(q,:)-T(p,:),T(r,:)-T(p,:)));%normal to face (p,q,r)
for k=1:42
text(T(k,1),T(k,2),T(k,3),num2str(k));
end;
n1=n(7,1,21);n1=n1/norm(n1);
n2=n(7,1,19);n2=n2/norm(n2);
n3=n(1,21,25);n3=n3/norm(n3);
a12=acos(n1*n2')*180/pi % angle at red junction
a13=acos(n1*n3')*180/pi % angle at blue junction
for p=1:42
for q=p+1:42;
no=norm(T(p,:)-T(q,:));%the two lengths are 0.618 and 0.5465
if abs(no-0.618)<0.005 || abs(no-0.5465)<0.005
c='r';
if abs(n-0.618)<0.005;
c='b'
end;
I=[p,q];
plot3(T(I,1),T(I,2),T(I,3),c);
end;
end;
end;
view([-4,0]);
figure(2);hold on;axis equal;
x=T(:,1);y=T(:,2);z=T(:,3);
K=convhull(x,y,z); % convex hull
for k=1:80
I=K(k,:);colo=0.5+0.5*rand(1,3);
fill3(T(I,1),T(I,2),T(I,3),colo,'edgecolor','none');alpha(0.9)
end;