1

The polynomial $f(n) = 3n^3 - 39n^2 + 360n + 20$ I saw has one real root and it's $$n_1=\frac{13}{3}-\frac{2}{3} \sqrt{191} \sinh \left(\frac{1}{3} \sinh ^{-1}\left(\frac{4913}{191 \sqrt{191}}\right)\right)\approx -0.055223771734378147887$$ First, what formula, or how can that be? Second, how is it so, numerically $$f(n) = 3n^3 - 39n^2 + 360n + 20$$ $$f(n)=3(n-n_1)(n^2-13.055223771734378148 n+120.72095869751148663)$$?

dalton atwood
  • 149
  • 11

0 Answers0