Inspired by a nested radical of Ramanujan I propose this :
Let $a,b,c\in (2\sqrt[4\,]{5},6-2\sqrt[4\,]{5})$ such that $a+b+c=9$ then we have : $$\sqrt[4\,]{\frac{a+2\sqrt[4\,]{5}}{a-2\sqrt[4\,]{5}}}+\sqrt[4\,]{\frac{b+2\sqrt[4\,]{5}}{b-2\sqrt[4\,]{5}}}+\sqrt[4\,]{\frac{c+2\sqrt[4\,]{5}}{c-2\sqrt[4\,]{5}}}\leq\sqrt[4\,]{\frac{a+2\sqrt[4\,]{5}}{b-2\sqrt[4\,]{5}}}+\sqrt[4\,]{\frac{b+2\sqrt[4\,]{5}}{c-2\sqrt[4\,]{5}}}+\sqrt[4\,]{\frac{c+2\sqrt[4\,]{5}}{a-2\sqrt[4\,]{5}}}$$
I try to prove it term by term like this :
$$\sqrt[4\,]{\frac{a+2\sqrt[4\,]{5}}{a-2\sqrt[4\,]{5}}}\leq \sqrt[4\,]{\frac{a+2\sqrt[4\,]{5}}{b-2\sqrt[4\,]{5}}}$$
But it's cyclic so we are in the wrong way.
On the other hand I can prove that :
$$3\sqrt[4\,]{\frac{3+2\sqrt[4\,]{5}}{3-2\sqrt[4\,]{5}}}\leq\sqrt[4\,]{\frac{a+2\sqrt[4\,]{5}}{a-2\sqrt[4\,]{5}}}+\sqrt[4\,]{\frac{b+2\sqrt[4\,]{5}}{b-2\sqrt[4\,]{5}}}+\sqrt[4\,]{\frac{c+2\sqrt[4\,]{5}}{c-2\sqrt[4\,]{5}}}$$
Because it's not hard to show that the function $f(x)=\sqrt[4\,]{\frac{x+2\sqrt[4\,]{5}}{x-2\sqrt[4\,]{5}}}$ is convex on the interval $(2\sqrt[4\,]{5},6-2\sqrt[4\,]{5})$ and after apply Jensen's inequality.
I tried also majorization ,C-S,AM-GM and more but without success.
If you have nice idea I let you play with this .
Thanks a lot for sharing your time and knowledge .