$$\int_{0}^{1}\dfrac{x^2\ln x}{\sqrt{1-x^2}}dx$$
My attempt is as follows:
$$x=\sin\theta\Rightarrow dx=\cos\theta d\theta$$
$$\int_{0}^{\frac{\pi}{2}}\sin^2\theta\ln (\sin\theta)d\theta=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}(1-\cos2\theta)\ln(\sin\theta)d\theta$$ $$=\frac{1}{2}\left(\int_{0}^{\frac{\pi}{2}}\ln(\sin\theta)d\theta-\int_{0}^{\frac{\pi}{2}}\cos(2\theta)\ln(\sin\theta)d\theta\right)=\frac{1}{2}\left(\dfrac{-\pi\ln(2)}{2}-I'\right)$$
$$I'=\int_{0}^{\frac{\pi}{2}}\cos(2\theta)\ln(\sin\theta)d\theta=\int_{0}^{\frac{\pi}{2}}\cos\left(\pi-2\theta\right)\ln(\cos\theta)d\theta$$
$$\Rightarrow 2I'=\int_{0}^{\frac{\pi}{2}}\cos(2\theta)\ln(\tan\theta)d\theta$$
As $\cos(2\theta)\ln(\tan\theta)d\theta=\cos\left(2\left(\frac{\pi}{2}-\theta\right)\right)\ln\left(\tan\left(\dfrac{\pi}{2}-\theta\right)\right)d\theta$
$$I'=\int_{0}^{\frac{\pi}{4}}\cos(2\theta)\ln(\tan\theta)d\theta$$
$$I'=\int_{0}^{\frac{\pi}{4}}\frac{1-\tan^2\theta}{1+\tan^2\theta}\ln(\tan\theta)d\theta$$
$$\tan\theta=t$$ $$I'=\int_{0}^{1}(1-t^2)\ln(t)dt$$
Applying integration by parts
$$I'=-\lim_{t\to0}\ln(t)\cdot\left(t-\frac{t^3}{3}\right)-\int_{0}^{1}\left(1-\dfrac{t^2}{3}\right)dt$$
$$I'=-\left(1-\frac{1}{9}\right)=-\frac{8}{9}$$
So the answer would be $\dfrac{1}{2}\left(\dfrac{-\pi\ln(2)}{2}-I'\right)=\dfrac{1}{2}\left(\dfrac{-\pi\ln(2)}{2}+\dfrac{8}{9}\right)$
But actual answer is $\dfrac{\pi}{8}\left(1-\ln4\right)$. What mistake am I making here?