I thought it might be instructive to present a way forward that does not rely on Riemann sums or properties of Harmonic numbers.
Rather, we rely on only elementary analysis and the Taylor series for $\displaystyle \log(1+x)$. To that end, we now proceed.
The limit $\lim_{n\to\infty}\sum_{k=n/2}^n \frac1k$ converges. To see this we write
$$\begin{align}
\sum_{k=1}^{2m} \frac1k&=\sum_{k=1}^m \frac1{2k}+\sum_{k=1}^m\frac1{2k-1}\\\\\
&=\sum_{k=1}^{m} \frac1{k}+\sum_{k=1}^m\left(\frac1{2k-1}-\frac1{2k}\right)\\\\
\sum_{k=m+1}^{2m}\frac1k&=\sum_{k=1}^m\left(\frac1{2k-1}-\frac1{2k}\right)\\\\
&=\sum_{k=1}^{2m}\frac{(-1)^{k+1}}{k}\tag1
\end{align}$$
Letting $m=n/2$ in $(1)$ yields
$$\lim_{n\to\infty}\left(\sum_{k=n/2}^n\frac1k-\frac1{n/2}\right)=\sum_{k=1}^\infty\frac{(-1)^{k+1}}{k}\tag2$$
The right-hand side of $(2)$ is $\log(2)$ as recognized from the Taylor Series of $\log(1+x)=\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k}x^k$ evaluated at $x=1$. And the right-hand side reduces to the limit of interest. Hence, we see that
$$\lim_{n\to\infty}\sum_{k=n/2}^n\frac1k=\log(2)$$
And we are done!