1

Disclaimer: I am a total beginner in stochastic calculus

Let $\mathrm{d}X_t = a(b-X_t) \,\mathrm{d}t + c X_t \, \mathrm{d}W_t$ be a stochastic differential equation (this SDE is the variance differential form for the standard GARCH(1,1) model) where $a$, $b$, and $c$ are positive constants, so I tried to solve it but I'm sure I made a mistake in the process, here is my attempt:

$$\mathrm{d}X_t = a(b-X_t) \, \mathrm{d}t + c X_t \, \mathrm{d}W_t$$ $$\mathrm{d}X_t = ab \, \mathrm{d}t - aX_t \, \mathrm{d}t + c X_t \, \mathrm{d}W_t$$ $$\mathrm{d}X_t + aX_t \, \mathrm{d}t - c X_t \mathrm{d}W_t = ab \, \mathrm{d}t$$ $$\int_0^t \mathrm{d}X_t + \int_0^t aX_t \, \mathrm{d}t - \int_0^t c X_t \, \mathrm{d}W_t = \int_0^t ab \, \mathrm{d}t$$ $$\int_0^t \mathrm{d}X_t + \left[\int_0^t aX_t \, \mathrm{d}t + \int_0^t (-c) X_t \, \mathrm{d}W_t\right] = \int_0^t ab \, \mathrm{d}t \tag 1$$

(The following step and conclusion is where I must've definitely made the mistake)

The term inside the brackets looks familiar and has the following solution:

$$X_0 \mathrm{e}^{\left[\left(a - \frac{(-c)^2}{2}\right)t - cW_t\right]} \tag 2$$

We replace (2) in (1) and we get,

$$\int_0^t \mathrm{d}X_t + X_0 \mathrm{e}^{\left[\left(a - \frac{(-c)^2}{2}\right)t - c W_t\right]} = \int_0^t ab \mathrm{d}t$$ $$X_t - X_0 + X_0 \mathrm{e}^{\left[\left(a - \frac{(-c)^2}{2}\right)t - c W_t\right]} = abt$$ $$X_t - X_0 \left(1 - \mathrm{e}^{\left[\left(a - \frac{(-c)^2}{2}\right)t - c W_t\right]}\right) = abt$$

We finally get,

$$X_t = X_0 \left(1 - \mathrm{e}^{\left[\left(a - \frac{(-c)^2}{2}\right)t - c W_t\right]}\right) + abt$$

  • 1
    Note my edits including the use of \tag and the space separating \mathrm{d}x from its neighbors. – Michael Hardy Dec 30 '19 at 19:17
  • You can apply Ito lemma to the function $\phi(t,x) = X_0 \left(1 - \mathrm{e}^{\left[\left(a - \frac{(-c)^2}{2}\right)t - cx\right]}\right) + abt$. To check, if you retrieve the initial SDE. But having a quick glance at your final solution, it seems to have an issue at $t=0$, we have $X_0 = 0 $. I think the correct answer is $X_t = X_0 \left(\mathrm{e}^{\left[\left(a - \frac{c^2}{2}\right)t - cW_t\right]}\right) + abt$ – Sesame Jan 01 '20 at 00:07
  • 1
    Does this answer your question? Solution to General Linear SDE – Thomas Kojar Aug 14 '23 at 17:32

0 Answers0