The Poincare ball model with curvature $-1$ is defined as:
$B^n=\{x\in\mathbb{R}^{n}\,|\, ||x||< 1\}.$
The hyperboloid model with curvature $-1/\beta$ is defined as:
$H^{n,\beta}=\{x\in\mathbb{R}^{d+1}\,|\, \langle x,x\rangle_L=-\beta\}.$
For $\beta=1$, refer to Projection from Poincaré Ball to Hyperboloid,
we have $\Pi: H^{n}\rightarrow B^{n},$ $\Pi(x_{1}, \cdots, x_{n+1}) = \frac{(x_{2}, \ldots, x_{n+1})}{1 + x_{1}}$
and $\Pi^{-1}: B^{n}\rightarrow H^{n},$ $\Pi^{-1}(x_{1}, \cdots, x_{n}) = \frac{(1+\|x\|^2,2x_{1}, \ldots, 2x_{n})}{1 - \|x\|_2^2}$
I want to know how to convert the two models when the curvature $\neq-1$.