Let $N = q^k n^2$ be an odd perfect number with special / Euler prime satisfying $q \equiv k \equiv 1 \pmod 4$ and $\gcd(q,n)=1$.
Since $N$ is perfect and $\gcd(q,n)=1$, we have
$$2 = I(N) = I(q^k n^2) = I(q^k)I(n^2).$$
In particular, since $k \geq 1$, we know that
$$\frac{q+1}{q}=I(q) \leq I(q^k)$$
so that
$$I(n^2) = \frac{2}{I(q^k)} \leq \frac{2q}{q+1}.$$
Likewise, from the formula for the abundancy index of a prime power, we can obtain the upper bound
$$I(q^k) = \frac{q^{k+1} - 1}{q^k (q - 1)} < \frac{q^{k+1}}{q^k (q - 1)} = \frac{q}{q - 1},$$
so that we get the lower bound
$$\frac{2(q-1)}{q} < \frac{2}{I(q^k)} = I(n^2).$$
Summarizing, we get the bounds
$$\frac{q+1}{q} \leq I(q^k) < \frac{q}{q - 1} < \frac{2(q-1)}{q} < I(n^2) \leq \frac{2q}{q+1}.$$
Now, since it is known that $q \neq 1049$, we have two cases to consider:
Case 1: $q < 1049$
This implies that
$$\frac{1}{1049} < \frac{1}{q} \implies 1 + \frac{1}{1049} < 1 + \frac{1}{q} \implies \frac{2}{1 + \frac{1}{q}} < \frac{2}{1 + \frac{1}{1049}} \implies I(n^2) \leq \frac{2q}{q+1} < \frac{1049}{525}$$
where
$$\frac{1049}{525} = 1.99\overline{809523}.$$
This further means that
$$I(q^k) = \frac{2}{I(n^2)} > \frac{1050}{1049}.$$
Case 2: $q > 1049$
This yields
$$\frac{1}{q} < \frac{1}{1049} \implies 1 - \frac{1}{q} > 1 - \frac{1}{1049} = \frac{1048}{1049} \implies \frac{q}{q - 1} < \frac{1049}{1048},$$
which further implies that
$$I(q^k) < \frac{q}{q - 1} < \frac{1049}{1048},$$
and
$$I(n^2) = \frac{2}{I(q^k)} > \frac{2\cdot(1048)}{1049)} = \frac{2096}{1049} \approx 1.998093422306959.$$