Note that we must assume the $n$ is odd.
Let $H=\langle(1\,2\,3\,\ldots\,n),(1\,2\,3)\rangle$.
If $n=3$, then already $H=A_3$.
Hence we may assume $n\ge5$. In that situation, you showed that also $(1\,2\,3\,\ldots\,n-2)\in H$.
Hence we may assume by induction that $\langle (1\,2\,3\,\ldots\,n-2),(1\,2\,3)\rangle =A_{n-2}\subseteq H$.
Now consider $g\in A_n$, where $n>3$. Then there exist $h\in H$ such that $hg$ maps $n\mapsto n$, for example $h=(1\,2\,\ldots\,n)^{n-g(n)}$ has this property. Among all $h\in H$ with $hg(n)=n$, pick one that maximizes $hg(n-1)$.
Assume $hg(n-1)<n-1$.
Certainly $hg(n-1)\ge 2$ as otherwise $(1\,2\,3)h$ contradicts maximality of $h$.
Consider $$h'=(1\,2\,\ldots\,n)^r(1\,2\,3)(1\,2\,\ldots\,n)^{-r}h=(r+1\,r+2\,r+3)h,$$ where $r=hg(n-1)-2$. Then
$$h'g(n) =(r+1\,r+2\,r+3)hg(n)=(r+1\,r+2\,r+3)n=n$$
because $r+3<n$, and
$$h'g(n-1)=(r+1\,r+2\,r+3)(r+2)=r+3=hg(n-1)+1,$$
contradicting maximality of $h$.
We conclude that $hg(n)=n$ and $hg(n-1)=n-1$, so $hg\in A_{n-2}$ and finally, $g\in h^{-1}A_{n-2}\subseteq H$.