At first, we observe that $A:=\{ p^2-m^2 : p,m\in \Bbb{Z}\}=\mathbb{Z}\setminus (4\mathbb{Z}+2)$ (because an integer $a$ can be written as the form $a=p^2-m^2$ if and only if $a\neq 4k+2$, for every integer $k$) and so $A^c=4\mathbb{Z}+2$. Hence, $B:=\left\{ p^2-m^2 : p,m\in \Bbb{Z}\setminus \{0\}\right\}=A\setminus \left\{\pm k^2: k\in \Bbb{Z} \mbox{ and } k^2\neq s^2-t^2, \mbox{ for all } s,t\in \Bbb{Z}\right \}$
Now, put $$ D:=\left\{ \frac{p^2}{q^2}-\frac{m^2}{n^2}: p,q,m,n\in \Bbb{Z}\setminus \{0\} \text{ and} \gcd(p,q)= \gcd(m,n) =1\right\} $$ We would like to determine this set and its complement $D^c$ in $\Bbb{Q}$ exactly.
It is clear that $B\subseteq D$. Is it true that $D\neq \Bbb{Q}$?