Let $a,b,c,d>0$. I want to prove that $$\sum_{cyc} \sqrt{\frac{a}{b+c+d}}>2.$$
I try using Hölder's inequality : $$\left(\sum_{cyc} b+c+d\right)\left(\sum_{cyc} \sqrt{\frac{a}{b+c+d}}\right)^2\geq\left(\sum_{cyc} \sqrt[3] a\right)^3$$
so it would be enough to prove $$(\sqrt[3] a+ \sqrt[3] b+ \sqrt[3] c+ \sqrt[3] d)^3\geq 12(a+b+c+d)$$