In this posting, we will show that in fact $a_n\xrightarrow{n\rightarrow\infty}1$ converges for any initial condition $a_1=x>0$.
For $x>0$, define $a_1(x)=x$ and
$$a_{n+1}(x)=\Big(a_1(x)+\ldots + a_n(x)\Big)^{1/n}$$
Using the fact that $x^{1/m}\leq \max(1,x)$ for all $m\in\mathbb{N}$, we obtain
$$\begin{align}
(a_1(x))^{1/(n-1)}\leq a_n(x)\leq a_n(1)(\max(1,x)^{1/(n-1)})\tag{1}\label{one}
\end{align}$$
for $n\geq 2$. Indeed, the claim holds or $n=2$. Assuming the statement holds for $a_j(x)$, $2\leq j\leq n$ yields
$$\begin{align}
a_{n+1}(x)&\leq \big(a_1(1)x +a_2(1)x+\ldots +a_n(1)\max(1,x^{1/(n-1)})\big)^{1/n}\\
&\leq\Big(\big(a_1(1)+\ldots a_n(1)\big)\max(1,x)\Big)^{1/n}\\
&=a_{n+1}(1)\max(1,x^{1/n})
\end{align}
$$
Consider the case $x=1$. Clearly $a_n(1):=a_n\geq 1$ for all $n\in\mathbb{N}$. By induction
$$a_n\leq 2,\qquad n\in\mathbb{N}$$
Indeed, for $n=1$ this holds trivially. Assuming that $a_k\leq 2$ for $1\leq n$, gives
$$a_{n+1}=(a_1+\ldots+a_n)^{1/n}\leq (2n)^{1/n}\leq (2^n)^{1/n}=2$$
Consequently,
$$1\leq a_{n+1}\leq2^{1/n}2^{1/n}\xrightarrow{n\rightarrow\infty}1$$
Notice that if $a_n(1)$ converges and $a_1=1$, then from \eqref{one}
$$\lim_na_n(x)=\lim_na_n(1)=1$$