Could you please have a look on my solution of the following exercise? The text said that no advanced material like residue theorem and so on are allowed; only elementary methods
Let $f$ be holomoprhic function on $\{z \in \mathbb{C} \mid \lvert z - z_0 \rvert < r\}$ and let $f(z_0) = 0$, but $f^\prime(z_0) \ne 0$. Show that for $\epsilon>0$ small enough holds:
$$\int_{\lvert z - z_0 \rvert = \epsilon} \frac{dz}{f(z)} \ dz = \frac{2 \pi i }{f^\prime(z_0)}$$
My Attempt:
\begin{align} \int_{\lvert z - z_0 \rvert = \epsilon} \frac{dz}{f(z)} \ dz &= \int_0^{2\pi} \frac{1}{f(z_0 + \epsilon e^{it})} \cdot \epsilon i e^{it} \ dt \\ &=i \cdot \int_0^{2\pi} \frac{\epsilon e^{it}}{f(z_0 + \epsilon e^{it})-f(z_0)} \ dt = i \cdot \int_0^{2\pi} \frac{z_0+\epsilon e^{it}-z_0}{f(z_0 + \epsilon e^{it})-f(z_0)} \ dt\\ &= i \cdot \int_0^{2\pi} \frac{1}{f^\prime(z_0)} \ dt = \frac{2\pi i}{f^\prime(z_0)} \end{align}
For the last line I used that $\epsilon$ can be chosen arbitrarily small. Is this correct?
EDIT: Following Gabriele Cassese's comment I make a small adjustment to my proof. For a sequence $\epsilon_n \rightarrow 0$ we define the following sequence:
$$ f_n(z) := \int_{\lvert z - z_0 \rvert = \epsilon_n} \frac{dz}{f(z)}$$
Then it holds by the fact that the integral does not depend on $\epsilon$ that:
\begin{align} \lim_{n \rightarrow \infty} \ f_n(z) &= \lim_{n\to \infty}\int_{\lvert z - z_0 \rvert = \epsilon_n} \frac{dz}{f(z)} \ dz = \int_0^{2\pi} \lim_{n\to \infty}\frac{1}{f(z_0 + \epsilon_n e^{it})} \cdot \epsilon_n i e^{it} \ dt \\ &=i \cdot \int_0^{2\pi} \lim_{n \rightarrow \infty} \frac{\epsilon_n e^{it}}{f(z_0 + \epsilon_n e^{it})-f(z_0)} \ dt\\ &= i \cdot \int_0^{2\pi} \lim_{n \rightarrow \infty} \frac{z_0+\epsilon_n e^{it}-z_0}{f(z_0 + \epsilon_n e^{it})-f(z_0)} \ dt\\ &= i \cdot \int_0^{2\pi} \frac{1}{f^\prime(z_0)} \ dt = \frac{2\pi i}{f^\prime(z_0)} \end{align}
Is this correct now?