If the symmetry group is the dihedral group of order $32$, then this is the solution.
Let $D_n$ be the dihedral group of order $2n$. We start with the set $X$ of sequences $$(x_1,x_2,\ldots,x_{15},x_{16})$$ where $x_i\in\{0,1\}$ such that there are exactly $3$ values $i$ such that $x_i=1$ ($0$ represents a white bead and $1$ represents a black bead). Then the group $D_{16}$ acts on $X$ by cyclically rotating the entries and by reflecting the entries of each element of $X$. Namely, if $D_{16}$ is generated by a rotation $r$ and a reflection $s$, then we can define
$$r\cdot (x_1,x_2,\ldots,x_{15},x_{16})=(x_2,x_3,\ldots,x_{16},x_1)$$
and
$$s\cdot (x_1,x_2,\ldots,x_{15},x_{16})=(x_{16},x_{15},\ldots,x_2,x_1).$$
We want to compute the size of the set $Y$ of orbits of $X$ under $D_{16}$. By Burnside's lemma,
$$|Y|=\frac{1}{|D_{16}|}\sum_{g\in D_{16}}|X^g|,$$
where $X^g$ is the set of elements of $X$ stabilized by $g\in D_{16}$.
Note that $D_{16}=\left\{e,r,r^2,\ldots,r^{15},s,rs,r^2s,\ldots,r^{15}s\right\}$, where $e$ is the identity element of $D_{16}$.
Observe that $X^{r^k}=\emptyset$ for $k=1,2,\ldots,15$ (this is due to the fact that there are an odd number of $i$ such that $x_i=1$). However, there are reflections that fix some elements of $X$. A reflection of the form $r^ks$ with $k$ odd fixes precisely $2\cdot 7=14$ elements of $X$. This leaves
$$|Y|=\frac{1}{|D_{16}|}\left( |X^e|+\sum_{k=0}^7 \left|X^{r^{2k+1}s}\right|\right)=\frac{1}{|D_{16}|}\big(|X|+8\cdot 14\big),$$
so
$$|Y|=\frac{1}{32}\left(\binom{16}{3}+112\right)=\frac{560+112}{32}=21.$$
In general, if there are $n$ beads on the bracelet with $c$ colors and the $j$th color has $\ell_j$ beads, then we have the following scenarios.
- If $n$ is even and every $\ell_j$ is even, then
$$|Y|=\tiny\frac{1}{2n}\left(\sum_{k\mid\gcd(n,\ell_1,\ell_2,\ldots,\ell_c)}\phi\left(\frac{n}{k}\right)\binom{n/k}{\frac{\ell_1}{k},\frac{\ell_2}{k},\ldots,\frac{\ell_c}{k}}+\frac{n}{2}\binom{n/2}{\frac{\ell_1}{2},\frac{\ell_2}{2},\ldots,\frac{\ell_c}{2}}+\frac{n}{2}\sum_{j=1}^c\binom{\frac{n}{2}-1}{\frac{\ell_1}{2},\frac{\ell_2}{2},\ldots,\frac{\ell_{j-1}}{2},\frac{\ell_j}{2}-1,\frac{\ell_{j+1}}{2},\ldots,\frac{\ell_c}{2}}\right).$$
- If $n$ is even and $\ell_j$ is odd for exactly two $j$, say $j_1$ and $j_2$, then
$$|Y|=\tiny\frac{1}{2n}\left(\sum_{k\mid\gcd(n,\ell_1,\ell_2,\ldots,\ell_c)}\phi\left(\frac{n}{k}\right)\binom{n/k}{\frac{\ell_1}{k},\frac{\ell_2}{k},\ldots,\frac{\ell_c}{k}}+\frac{n}{2}\binom{\frac{n}{2}-1}{\frac{\ell_1}{2},\frac{\ell_2}{2},\ldots,\frac{\ell_{j_1-1}}{2},\frac{\ell_{j_1}-1}{2},\frac{\ell_{j_1+1}}{2},\ldots,\frac{\ell_{j_2-1}}{2},\frac{\ell_{j_2}-1}{2},\frac{\ell_{j_2+1}}{2},\ldots,\frac{\ell_c}{2}}\right).$$
- If $n$ is even and there are more than two values of $j$ such that $\ell_j$ is odd, then
$$|Y|=\frac{1}{2n}\left(\sum_{k\mid\gcd(n,\ell_1,\ell_2,\ldots,\ell_c)}\phi\left(\frac{n}{k}\right)\binom{n/k}{\frac{\ell_1}{k},\frac{\ell_2}{k},\ldots,\frac{\ell_c}{k}}\right).$$
- If $n$ is odd and $\ell_j$ is odd for exactly one value of $j$, say $j_0$, then
$$|Y|=\small\frac{1}{2n}\left(\sum_{k\mid\gcd(n,\ell_1,\ell_2,\ldots,\ell_c)}\phi\left(\frac{n}{k}\right)\binom{n/k}{\frac{\ell_1}{k},\frac{\ell_2}{k},\ldots,\frac{\ell_c}{k}}+n\binom{\frac{n-1}{2}}{\frac{\ell_1}{2},\frac{\ell_2}{2},\ldots,\frac{\ell_{j_0-1}}{2},\frac{\ell_{j_0}-1}{2},\frac{\ell_{j_0+1}}{2},\ldots,\frac{\ell_c}{2}}\right).$$
- If $n$ is odd and there are more than one values of $j$ such that $\ell_j$ is odd, then
$$|Y|=\frac{1}{2n}\left(\sum_{k\mid\gcd(n,\ell_1,\ell_2,\ldots,\ell_c)}\phi\left(\frac{n}{k}\right)\binom{n/k}{\frac{\ell_1}{k},\frac{\ell_2}{k},\ldots,\frac{\ell_c}{k}}\right).$$
If the symmetry group is the cyclic group of order $16$, then this is the solution.
Let $Z_n$ be the cyclic group of order $n$. We start with the set $X$ of sequences $$(x_1,x_2,\ldots,x_{15},x_{16})$$ where $x_i\in\{0,1\}$ such that there are exactly $3$ values $i$ such that $x_i=1$ ($0$ represents a white bead and $1$ represents a black bead). Then the group $Z_{16}$ acts on $X$ by cyclically rotating the elements. Namely, if $Z_{16}$ is generated by $z$, then we can define
$$z\cdot (x_1,x_2,\ldots,x_{15},x_{16})=(x_2,x_3,\ldots,x_{16},x_1).$$
We want to compute the size of the set $Y$ of orbits of $X$ under $Z_{16}$. By Burnside's lemma,
$$|Y|=\frac{1}{|Z_{16}|}\sum_{g\in Z_{16}}|X^g|,$$
where $X^g$ is the set of elements of $X$ stabilized by $g\in Z_{16}$. Let $O_k=\big\{g\in Z_{16}\big| \text{order of }g\text{ is }k\big\}$. Observe that, if $k\mid 16$ and $k>1$, then $X^g=\emptyset$ for any $g\in O_k$ (this is due to the fact that there are an odd number of $i$ such that $x_i=1$). This leaves
$$|Y|=\frac{1}{|Z_{16}|} |X^e|=\frac{1}{|Z_{16}|}|X|=\frac{1}{16}\binom{16}{3}=35,$$
where $e$ is the identity element of $Z_{16}$.
In general, if $\ell$ is the number of $i$ such that $x_i=1$, then for any positive integer $k$ such that $k\mid 16$, $O_k$ is non-empty if and only if $k$ divides $\ell$. Even more generally, if we replace $16$ by a positive integer $n$, then for any positive integer $k$ such that $k\mid n$, $O_k$ is non-empty if and only if $k$ divides $\ell$. We can see that
$$|Y|=\frac{1}{n}\sum_{k\mid\gcd(n,\ell)}\phi\left(\frac{n}{k}\right)\binom{n/k}{\ell/k}.$$
If there are $c$ colors such that the $j$th color has $\ell_j$ beads, then
$$|Y|=\frac{1}{n}\sum_{k\mid\gcd(n,\ell_1,\ell_2,\ldots,\ell_c)}\phi\left(\frac{n}{k}\right)\binom{n/k}{\frac{\ell_1}k,\frac{\ell_2}k,\ldots,\frac{\ell_c}k}.$$