The equation $x^2-a=\sqrt{x+a}$ has real or
imaginary roots depending on the values of $a.$
Then range of $a$ for which the equation.
$(a)\;\; $ No real roots
$(b)\;\; $ One real root
$(c)\;\;$ Exactly two real roots
$(d)\;\;$ At least two real roots
what i try
$x^2-a=\sqrt{x+a}\Rightarrow (x^2-a)^2=x+a$
$x^4+a^2-2ax^2=x+a\Rightarrow a^2-(2x^2+1)a+x^4-x=0$
$$a=\frac{(2x^2+1)\pm \sqrt{(2x^2+1)^2-4(x^4-x)}}{2}$$
$$a=\frac{2x^2+1\pm (2x+1)}{2}$$
$$a=x^2-x,a=x^2+x+1$$
$(a)$ For no real roots
$x^2-x-a=0$ and $x^2+x+1-a=0$ has no real roots
So $1+4a>0$ and $\displaystyle 1-4(1-a)>0\Rightarrow a>-\frac{1}{4}.$
How do i solve other parts Help me please