Let $a \in \mathbb{R}$ and the series
$x_1=1;$
$n \in \mathbb{N^*};$
$x_{n+1} = x_n + \sqrt{x_n^2 + 1};$
Calculate: $\lim_{n\to\infty}(\frac{2^n}{x_n})$
Please do not post a proof to this because I only want a hint.
Let $a \in \mathbb{R}$ and the series
$x_1=1;$
$n \in \mathbb{N^*};$
$x_{n+1} = x_n + \sqrt{x_n^2 + 1};$
Calculate: $\lim_{n\to\infty}(\frac{2^n}{x_n})$
Please do not post a proof to this because I only want a hint.