0

Let $a \in \mathbb{R}$ and the series

$x_1=1;$

$n \in \mathbb{N^*};$
$x_{n+1} = x_n + \sqrt{x_n^2 + 1};$

Calculate: $\lim_{n\to\infty}(\frac{2^n}{x_n})$

Please do not post a proof to this because I only want a hint.

Marc Grec
  • 657

0 Answers0