Prove that $$\int \bigg||f|^p-|g|^p\bigg|d\mu\leq \int \big|f-g\big|^pd\mu$$
for all $f, g \in L^p([0, 1]; \mu)$ and $0 < p < 1$.
Is the following correct?
the function $f(t)=|t|^p$ , $0 < p < 1$ is concave. So $\forall \alpha \in (0,1)$;
$$ |x-y|^p = |\alpha\frac{x}{\alpha}-(1-\alpha)\frac{y}{1-\alpha}|^p \geq \alpha|\frac{x}{\alpha}|^p+(1-\alpha)|\frac{y}{1-\alpha}|^p$$
let $\alpha = \frac{|x|}{|x|+|y|}$ and $1-\alpha = \frac{|y|}{|x|+|y|}$ \begin{align} |x-y|^p & \geq \alpha\frac{|x|^p}{ \frac{|x|^p}{(|x|+|y|)^p}}+(1-\alpha)\frac{|y|^p}{ \frac{|y|^p}{(|x|+|y|)^p}}\\ & = \alpha(|x|+|y|)^p+(1-\alpha)(|x|+|y|)^p\\ & = (|x|+|y|)^p\\ & \geq |x|^p+|y|^p\\ & \geq \bigg||x|^p-|y|^p\bigg|\\ \end{align}
so taking integration $$|f-g|^p \geq \bigg||f|^p-|g|^p\bigg|$$ $$\int|f-g|^pd\mu \geq \int\bigg||f|^p-|g|^p\bigg|d\mu$$