0

I saw a post asking for the solution of $\int x^n e^x dx$ for an arbitrary positive integer $n.$

(How to integrate $ \int x^n e^x dx$?) In light of that, how does one determine a general solution in terms of a series?

Thank you!!!!

1 Answers1

3

\begin{align} & \int x^ne^x\,\mathrm dx =\int x^n\sum_{k\ge0}\frac{x^k}{k!}\,\mathrm dx \\[8pt] ={} & \int\sum_{k\ge0}\frac{x^{n+k}}{k!}\,\mathrm dx = \sum_{k\ge0}\frac1{k!}\int x^{n+k}\,\mathrm dx \\[8pt] = {} & C+\sum_{k\ge0}\frac{x^{n+k+1}}{k!(n+k+1)} \end{align}

user170231
  • 25,320