This question is from a multi-step problem on iterated limits. First, we are given a doubly indexed array $a_{m,n}$ where $m, n$ $\epsilon$ $\mathbb{N}$.
Define $\lim \limits_{m,n \to \infty} a_{m,n} = a$ to mean that for all $\epsilon > 0$ there exists an $N$ $\epsilon$ $\mathbb{N}$ such that if both $m, n$ $\geq$ $N$, then $\lvert a_{m,n} - a\rvert$ $<$ $\epsilon$.
The iterated limits are shown as: $$\lim \limits_{m \to \infty} \bigl( \lim \limits_{n \to \infty} a_{m,n} \bigr)$$ $$\lim \limits_{n \to \infty} \bigl( \lim \limits_{m \to \infty} a_{m,n} \bigr)$$
I've already proved in a previous part that if $\lim \limits_{m,n \to \infty} a_{m,n} = a$, and for each fixed $m$ $\epsilon$ $\mathbb{N}$ $\lim \limits_{n \to \infty} a_{m,n} = b_m$, that $\lim \limits_{m \to \infty} b_m = a$.
Prove that if $\lim \limits_{m,n \to \infty} a_{m,n}$ exists, and both iterated limits exist, that all three limits must be equal.
It seems that the result follows from what is proved in the previous part. Does the fact that $\lim \limits_{m \to \infty} \bigl( \lim \limits_{n \to \infty} a_{m,n} \bigr)$ exists imply that for each fixed $m$ $\epsilon$ $\mathbb{N}$ $\lim \limits_{n \to \infty} a_{m,n} = b_m$? Or can we not assume that $b_m$ exists for all $m$ $\epsilon$ $\mathbb{N}$?
I feel like I am missing a step.