I have a series I can generate sequentially if I pair elements with Pell numbers. If I pair them with $1,2,5,12,29,...$ (Pell numbers, $p_n$) and call elements of this series $q_n$, then $q_n=q_{n-1}+p_{n-1}$ where $q_0=1$.
$$1\quad 2\quad 4\quad 9\quad 21\quad 50\quad 120\quad 289\quad 697\quad 1682\quad 4060\quad 9801\quad 23661\quad 57122$$
I would like to generate any $q_n$ directly. I can get $p_n$ directly but so far my formula depends on knowing $q_{n-1}$ beforehand. Can the $n^{th} q$ be generated directly?