Solve :$$ \int \frac{dx}{1-\sin x+\cos x} $$
I tried:
$$\int \frac{\text{dx}}{(1+\cos x)-\sin x} \times \frac{(1+\cos x)+\sin x}{(1+\cos x)+ \sin x} dx=\int \frac{1+\cos x+\sin x}{(1+\cos x)^2-(\sin x)^2}$$ $$=\int \frac{1+\cos x+\sin x}{1-\sin x^2+2 \cos x+\cos x^2}=\int \frac{1+\cos x+\sin x}{2 \cos x(\cos x+1)}$$ $$=\int (\frac{1}{2 \cos x}+ \frac{\sin x}{2 \cos x(\cos x+1)})dx=\frac{1}{2} \ln(\sec x+\tan x)+ \int \frac{\sin x}{2\cos x(\cos x+1)}dx$$ $ \cos x=u$ , $du=-\sin xdx$ $$\int \frac{-du}{2u(u+1)}= \frac{-1}{2} \int (\frac{1}{u}-\frac{1}{u+1})= \frac{-1}{2}(\ln(\cos x)-\ln(\cos x+1))$$
final answer : $$\frac{1}{2} \ln(\sec x+\tan x)-\frac{1}{2} \ln(\frac{\cos x}{1+\cos x})+ c$$
First: Is my answer right?
Second: Is there another approach or easier approach to solve this integral?