The polynomial $x^{2k}+1+(x+1)^{2k}$ is not divisible by $x^2+x+1$. Find the value of $k\in \mathbb{N}$.
I tried finding out the roots of $x^2+x+1$ which were $\dfrac{-1±\sqrt{3}i}{2}$ but in vain. I got no result other than making the polynomial more complicated.
Here's what I got : $$\left(\frac{-1±\sqrt{3}i}{2}\right)^{2k}+1+\left(\frac{-1±\sqrt{3}i}{2}+1\right)^{2k}.$$
Now, I don't know what to do next.
Any help would be appreciated.