I'm studying Ring Theory and I have 3 questions, if could be nice to hear your comments about that.
1) I would like to find a primer element which is not irreductible. We said that $a$ is irreductible iff $a \in A - (A^{\times} \cup \{0\})$ and $$ \forall (b,c) \in A, a = bc \Rightarrow b \in A^{\times} \text{ or } c \in A^{\times} $$ If the ring $R$ is a integral domain then primer => irreductible. We said that $a$ is a primer element iif $a \in A - (A^{\times} \cup \{0\})$ and $$ \forall b,c \in A, a|bc \Rightarrow a|b \text{ or } a|c $$
2) I'm trying to find the primer and the irreductible element of $\mathbb Z/n\mathbb Z$, but I can just study exemples when $n$ is not a prime. Do you know how to study it in general ?
Thanks for your help and regards.