-4

Given a finite function $f$ in $\boldsymbol{R}^n$, if set $A$ is a closed bounded set, could I say $\{f(\boldsymbol{x}), \boldsymbol{x} \in A\}$ is bounded?

The definition of finite function is $-\infty < f(\boldsymbol{x}) < +\infty, \forall \boldsymbol{x} \in \boldsymbol{R}^n$.

Zenan Li
  • 1,434

1 Answers1

2

$f(x)=\frac 1 x$ for $0<x\leq 1$ and $f(0)=0$ is a counterexample. I am taking $n=1$.