Problem. Let $p_{n}(x)$ be the Taylor Polynomial of degree $n$ of $f(x)=\cos(x)$ about $a=0$. How large should $n$ be so that $\vert f(x) - p_{n}(x)\vert<10^{-5}$ for $-\frac{\pi}{4}\le x \le \frac{\pi}{4}$?
Solution. We know
$$ \frac{d^{n}}{dx^{n}} \cos x= \cos\left(x+n\frac{\pi}{2}\right),$$ and $$\vert R_{n}\vert \le \frac{\vert(x-a)\vert^{n+1}}{(n+1)!}\max_{a<c<x} |f^{(n+1)}(c)|,$$ so $$\vert R_{n}\vert \le \frac{|x|^{n+1}}{(n+1)!}<\frac{1}{(n+1)!}<10^{-5},$$ for which WA spits out $n\ge7.$ Would this be right?