Using $\ \color{#c00}zf\,\bmod \color{#c00}zg\ = \,\color{#c00}z\, (f \bmod g)\, =\, $ mod Distributive Law to factor out $\, \color{#c00}{z := x\!-\!1}$
$\,\begin{align} \smash[b]{\underbrace{\color{#c00}z(z\!+\!1)^{\large n} \bmod \color{#c00}z^{\large 3}}_{\!\!\!\!\!(x-1)x^n\bmod (x-1)^3}} &=\, \color{#c00}z\,(\color{#0a0}{(1+ z)^{\large n}}\bmod \color{#0a0}{z^{\large 2}})\qquad\ \ \ \ \text{[OP is }\, n = 2014]\\[.4em]
&=\,z\,(\color{#0a0}{1+nz})\ \ \text{ by } \color{#0a0}{\text{Binomial or Taylor }}\text{Theorem}\\[.4em]
&=\ n\!-\!1 + (1\!-\!2n)\,x + n\, x^{\large 2}\ \ \ \ {\rm by}\,\ \color{#c00}{z=x\!-\!1}
\end{align}$