The hint:
Use the Mixing Variables method.
Indeed, we can use the beautiful Can's idea.
Since $$\prod\limits_{cyc}(a-1)^2=\prod_{cyc}((a-1)(b-1))\geq0,$$ we can assume that $$(a-1)(b-1)\geq0$$ or
$$a+b\leq1+ab=1+\frac{1}{c}.$$
Thus, by C-S:
\begin{align}
\sqrt{a^2-a+1}&+\sqrt{b^2-b+1}\\
&=\sqrt{a^2+b^2-a-b+2+2\sqrt{(a^2-a+1)(b^2-b+1)}}\\
&\geq\sqrt{a^2+b^2-a-b+2+2\sqrt{\left(\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right)\left(\left(b-\frac{1}{2}\right)^2+\frac{3}{4}\right)}}\\
&\geq\sqrt{a^2+b^2-a-b+2+2\left(\left(a-\frac{1}{2}\right)\left(b-\frac{1}{2}\right)+\frac{3}{4}\right)}\\
&=\sqrt{a^2+b^2-a-b+2+2ab-a-b+2}\\
&=\sqrt{(a+b)^2-2(a+b)+4}.
\end{align}
But $f(x)=\sqrt{x^2-2x+4}-x$ decreases, which says
$$\sum_{cyc}(\sqrt{a^2-a+1}-a)\geq f(a+b)+\sqrt{c^2-c+1}-c\geq$$
$$\geq f\left(1+\frac{1}{c}\right)+\sqrt{c^2-c+1}-c=\sqrt{3+\frac{1}{c^2}}-1-\frac{1}{c}+\sqrt{c^2-c+1}-c.$$
Id est, it's enough to prove that:
$$\sqrt{3+\frac{1}{c^2}}-1-\frac{1}{c}+\sqrt{c^2-c+1}-c\geq0$$ and the rest is smooth.
Can you end it now?
But $\sum \frac{x+y}{2y}\leq \sum \frac{x}{y}$-> wrong.
Then, I tried to use inequality $\sqrt{x^2-xy+y^2}\geq \frac{x^2+y^2}{x+y}$ but I don't know how to prove $\sum \frac{x^2+y^2}{x+y}\geq \sum \frac{x}{y}$ ...........
– Analyn_a Aug 14 '19 at 12:09