Let $A$ be an $m$ by $n$ $(0,1)$-matrix. For $1\leq i \leq m$ and $1\leq j \leq n$, let $f(A,i,j)$ be the number of entries in $A$ not in row $i$, not in column $j$, and not equal to $a_{ij}$.
I would like a proof or counterexample to the following conjecture:
If $A$ is not all 1's or all 0's, then there exist $i$ and $j$ such that $f(A,i,j)\geq \frac{(m-1)(n-1)-1}{2}$.
Example 1: For $A=\begin{bmatrix} 1 & 0 & 1 & 0\\0 & 1 & 0 & 1 \\1 & 0 & 1 & 0\\0 & 1 & 0 & 1 \\\end{bmatrix}$, we have $f(A,1,1)=4\geq\frac{3\cdot3-1}{2}$.
Example 2: For $A=\begin{bmatrix} 0 & 1 & 0 & 0 & 1\\1 & 0 & 0 & 1 & 0 \\1 & 0 & 1 & 0 & 1\\0 & 0 & 0 & 0 & 1\\\end{bmatrix}$, we have $f(A,1,2)=6\geq\frac{3\cdot 4-1}{2}$.