By CRT = Chinese Remainder Theorem, to compute a remainder $\!\bmod 2019 = 3\cdot 673\,$ it suffices to compute the remainder mod $3\,$ & $\,673,\,$ then apply the CRT formula.
$\!\!\bmod 3\!:\,$ the remainder is congruent to the digit sum (as in casting out nines).
$\!\!\bmod 673\!:\ \color{#0af}{10^{\large 14}\equiv 8}\,$ so we can use that to work in chunks of $\,14\,$ decimal digits, e.g.
$\ n = 8100000000000025= 81(\color{#0af}{10^{\large 14}})+25 \equiv 81(\color{#0af}8)+25\equiv 673\equiv \color{#0a0}0$
$ $ By $ $ Easy $ $ CRT: $\ \ \ \ \ \begin{align} &n\equiv \color{#0a0}a\!\!\pmod{\!673}\\ &n\equiv\color{#c00} b\!\!\pmod{\!3}\end{align}\iff\, n\equiv \color{#0a0}a + 673(\color{#c00}b\!-\!\color{#0a0}a)\,\pmod{\!2019}$
e.g. above $\,n\equiv 8\!+\!1+\!2\!+\!5\equiv\color{#c00} 1\pmod{\!3}\,$ so $\ n\equiv \underbrace{\color{#0a0}0+673(\color{#c00}1\!-\!\color{#0a0}0)}_{\large 673}\,\pmod{\!2019}$
For some numbers this may be faster than the universal divisibility test, which is essentially a modular form of the long division algorithm that ignores the quotients.
Alternatively it is the special case $\,\color{#c00}{t = 201}\,$ of a general divisibilit test, viz.
$$\begin{align} n=10\:\!\color{#c00}t\!+\!9&\mid 10b\!+\!a\iff n\mid b\!+\!(1\!+\!\color{#c00}t)a\\[.3em]
\underset{\color{#c00}{\!t\,=\,201}}\Longrightarrow n=2019&\mid10b\!+\!a\iff n\mid b\ +\ 202\,a \end{align}\qquad\qquad$$