Let $G$ be directed graph with adjacency matrix $A$ and let us assume that $A$ is primitive, i.e. there exists $N\in\mathbb{N}$ such that $(A^N)_{i,j}>0$ for all $i,j$.
Let now $L(G)$ be the line digraph of $G$ and denote by $B$ its adjacency matrix. (Two vertices representing directed edges from $u$ to $v$ and from $w$ to $x$ in $G$ are connected by an edge from $uv$ to $wx$ in the line digraph when $v = w$).
My guess is that the matrix $B$ is again primitive and this seems to fit with some examples I calculated. However, I am not sure how to prove it rigorously. Can anybody share some good ideas?
I have tried to look for ways of expressing $B$ in terms of $A$, but for digraph I have found no connection...
Thank you very much for your help!