Let $f$ be a function satisfying $$\int_{-\infty}^{\infty}|f(x)|dx<\infty.$$
Is it true that for almost every $x\in\mathbb{R}$, $$f(x)=\lim_{R\rightarrow+\infty}\int_{-R}^{R}\hat{f}(w)e^{2i\pi x w}dw?$$
Here $\hat{f}$ denotes the Fourier transform of $f$.
Thanks for any comment or any suggestions.