In this post one can find a proof of the following identity
$$ \sum^{\infty}_{m=1} \frac{1}{m} \frac{(-x)^m}{m!} = Ei(-x)-\ln(x)-\gamma, \qquad (1)$$ for $x>0$. On the other hand, it is easy to see that $$ \sum^{\infty}_{m=1} \frac{1}{m} \frac{(-x)^m}{m!} = -x \cdot \ _2F_2(1,1;2,2;-x). \qquad (2) $$ For a definition of the generalized hypergeometric function, see this page. Comparing (1) and (2) implies that we should have the following identity
$$ -x \cdot \ _2F_2(1,1;2,2;-x) = Ei(-x)-\ln(x)-\gamma, \qquad x>0. \qquad (3) $$
I want to establish (3) independently, more precisely from the integral representation of generalized hypergeometric function which can be found here. From the equation given in DLMF and the identity $\Gamma(z+1)=z\Gamma(z)$ we can write
$$ _2F_2(1,1;2,2;-x) = \frac{1}{2\pi i} \int_{C} \frac{\Gamma(-s)}{(1+s)^2}x^sds, $$
where $C$, as suggested by DLMF, is any contour which separates the poles of $\Gamma(-s)$ from those of $\Gamma(1+s)$. I choose $$C := \Sigma_{-,\varepsilon} \cup \Sigma_{+,\varepsilon} \cup C_{\varepsilon},$$ where $\Sigma_{-,\varepsilon}$ starts at $-\infty-i\varepsilon$, continues to the right along $y=-\varepsilon$ to reach $-1-\varepsilon - i \varepsilon$, $\Sigma_{+,\varepsilon}$ starts at $-1-\varepsilon + i \varepsilon$ and continues to the left along $y=\varepsilon$ all the way to $-\infty + i \varepsilon$, and $C_{\varepsilon}$ encircles $-1$ in a ccw way and connects $-1-\varepsilon - i \varepsilon$ to $-1-\varepsilon + i \varepsilon$. Since the integrand is analytic on $(-\infty,-1-\varepsilon)$, the integral over $C$ can be replaced by the integral over the positively oriented circle $C'_{\varepsilon}$ of radius $\varepsilon$ centered at $-1$ (by deforming the $\Sigma_{-,\varepsilon} $ and $ \Sigma_{+,\varepsilon}$ to $(-\infty,-1-\varepsilon)$ and the corresponding integrals get cancelled). Thus by a residue calculation we have
$$ _2F_2(1,1;2,2;-x) = \frac{1}{2\pi i} \int_{C'_{\varepsilon}} \frac{\Gamma(-s)}{(1+s)^2}x^sds = \frac{d}{ds} \left( \Gamma(-s)x^s \right) \bigg|_{s=-1} = $$
$$ -\Gamma'(-s)x^s + \ln(x) \Gamma(-s)x^s \bigg|_{s=-1} = \frac{\gamma + \ln(x)}{x}, $$ using $\Gamma'(1)=-\gamma$. Hence
$$ -x \cdot _2F_2(1,1;2,2;-x) = - \ln(x) - \gamma. $$
So I have not shown (3), as I am missing $Ei(-x)$ on the right hand side. I suspect that I am missing something when I am collapsing the integrals on $\Sigma_{-,\varepsilon} $ and $ \Sigma_{+,\varepsilon}$ but I do not see it... I appreciate any help in advance!