I am a statistics student who is simply trying to see if $X$ and $Y$ are independent then $\log X$ and $\log Y$ are independent as well.
I tried to look for information regarding this and I see people mentioning Borel functions all the time.
I am not familiar with its definition and with the courses I will be taking in the future it is not likely that I will ever study set theory or any topology classes that may lead me to fully learn this.
So, it boils down to this question.
Can any of the following elementary functions be an example where
"$X$ independent from $Y$ but $f(X)$ is dependent on $f(Y)$?"
$$f(x)=x^n$$ $$f(x) = a^x$$ $$f(x)=\log_a(x)$$ $$f(x)=x^{\frac{1}{n}}$$ $$f(x)...\text{Trig functions such as} \quad \sin(x), \cos(x).$$ $$f^{-1}(x)...\text{Inverse trig functions such as } \quad \arcsin(x), \arccos(x).$$
Intuitively I want to say that when $X$ and $Y$ are independent, invertible functions would produce independence in $f(X)$ and $f(Y)$ but I would like to know if that is the case. Or, at least, it is true for these elementary functions that are taught in highschool