Let $T:\operatorname{dom}(T) \to \ell^{2}$ where $T(x^{n})=(mx_{m}^{n})_{m \in \mathbb N}$
Let $\operatorname{dom}(T):=\{x^{n}\in \ell^{2}: (mx_{m}^{n})_{m \in \mathbb N} \in \ell^{²}\}$
Determine whether $T$ is closed or not:
Initially I attempted to show that $T$ is closed, by assuming a $(x^{n})_{n} \subseteq \ell^{2}$ where $x^{n}\xrightarrow{n \to \infty, \vert \vert \cdot \vert \vert_{2}} x$ and $T(x^{n})\xrightarrow {n \to \infty, \vert \vert \cdot \vert \vert_{2}}y$. In order to show that $x \in \operatorname{dom}(T)$, note that from $x^{n}\xrightarrow{n \to \infty, \vert \vert \cdot \vert \vert_{2}} x$ that it follows: $\lim\limits_{m \to \infty}x^{m}_{i}=x_{i}$ for all $ i \in \mathbb N$ and hence let $N \in \mathbb N$ arbitrary:
First question: convergence in $\ell^{p}, 1\leq p<\infty$ of $(x^{n})_{n}$ to $x$ does imply convergence in each respective coordinate, correct?
$\sum\limits_{i=1}^{N} \vert x_{i} \vert^{2}=\lim\limits_{m\to \infty}\sum\limits_{i=1}^{N} \vert x_{i}^{m} \vert^{2}\leq\lim\limits_{m\to \infty}\vert\vert x^{m}\vert\vert_{2}^{2}$, but this estimate does not help me.
So, I now believe that it may not be closed. Any ideas on showing that it is not closed.