2

how to prove that $m!$ divides product of $m$ consecutive number .

in other hand :

if we have :$k+1,...,k+m$ then $m! | (k+1)...(k+m)$ $(k,m \in \Bbb Z)$

azimut
  • 24,316
elham
  • 789

2 Answers2

4

Hint: The number $\displaystyle \frac{(k+1)\cdots(k+m)}{m!}$ counts something :)

Alex Youcis
  • 56,595
3

Hint:

Consider the binomial coefficient $\binom{k+m}{m}$.

Good luck!

dtldarek
  • 37,969