Is the function $f:(0,\infty)\rightarrow(0, 1)$, defined below, analytic at $r=1$?
$$f(r) := \frac{\arccos\left(\frac{\sqrt{r}+1}{r+\frac{1}{\sqrt{r}}}\right)}{\pi \left|1-\frac{1}{r^{3/2}}\right|}\quad \mathrm{if\ } r>0\mathrm{\ and\ } r\neq1, $$ and $f(1) :=\frac{\sqrt{2}}{3 \pi }$ where $\arccos(x)\in [0,\pi].$
If you are interested, this function arises from retrograde motion.
The following statements seem to be true:
- $\lim_{r\rightarrow\infty} f(r) = 1/2$,
- $\lim_{r\rightarrow 0} \frac{f(r)}{r^{3/2}}=1/2$,
- $f(r) = f(1/r)r^{(3/2)}$,
- $g(r) = \frac{\sqrt{r}+1}{r+\frac{1}{\sqrt{r}}}$ is analytic at $r=1$,
- $g(r) = 1-\frac{1}{4} (r-1)^2+\frac{1}{4} (r-1)^3-\frac{11}{64} (r-1)^4+ \frac{3}{32} (r-1)^5 -\frac{21}{512} (r-1)^6+\frac{7}{512} (r-1)^7+ O((r-1)^8),$
- $1-g(r) = \frac{(r-1)(1-1/\sqrt{r})}{r+1/\sqrt{r}}\geq 0$,
- $\mathrm{sgn}(x)\arccos(1-x^2) = \sqrt{2} x + \frac{x^3}{6\sqrt{2}} +\frac{3 x^5}{80 \sqrt{2}} + \frac{5 x^7}{448 \sqrt{2}}+O(x^9)$, and
- $1-1/r^{3/2} = \frac{3 (r-1)}{2}-\frac{15}{8} (r-1)^2+\frac{35}{16} (r-1)^3-\frac{315}{128} (r-1)^4+\frac{693}{256} (r-1)^5-\frac{3003 (r-1)^6}{1024}+\frac{6435 (r-1)^7}{2048}+O\left((r-1)^8\right).$