If $(B_t)_{t\ge0}$ is a Standard Brownian Motion and $s < t$, what is the expectation $E[(B_t - B_s)^3]$?
Moreover, what is the trick to finding these expectations? Say I also need to find $E[(B_t - B_s)^4]$ or $E[B_t(B_t - B_s)^3]$ or the like -- what is the general mindset or approach that I should employ when attacking these problems? My professor doesn't shy away from giving lemmas for the values of the expectations of these, but he never actually tells us how they're proven. I'd like to learn.
Thank you so much in advance.