4

Is every Lindelöf subspace of the ordinal space $\omega_1$ countable?

user642796
  • 53,641

1 Answers1

2

If $Y \subseteq \omega_1$ is uncountable, enumerate it is increasingly as $\{ \alpha_\xi : \xi < \omega_1 \}$. Then $$\mathcal{U} = \{ [ 0 , \alpha_\xi + 1 ) \cap Y : \xi < \omega_1 \}$$ is an open cover of $Y$ without a countable subcover.

user642796
  • 53,641