11

Given real-valued continuous functions $f, g$, is the following (and why?) inequality true?

$$\max \{f + g \} \leq \max f + \max g$$

Can someone give me a proof? I suspect the min is the reverse inequality

Lemon
  • 12,972

3 Answers3

8

For all $x$, $$f(x)\le \max f(x)$$ and $$g(x)\le\max g(x).$$ Now add the two together.

MJD
  • 67,568
  • 43
  • 308
  • 617
1

let $\max g(z):=g(z^*)$, $\max f(z):=f(z^*)$ then $$f(z)\le f(z^*)$$ $$g(z)\le g(z^*) $$ then $$\forall z : (f+g)(z)=f(z)+g(z)\le f(z^*)+g(z^*)$$ $$\max(f+g)(z)\le f(z^*)+g(z^*)=\max f(z)+\max g(z)$$

M.H
  • 11,654
  • 3
  • 32
  • 69
  • 1
    the only way to replace max $g(x)$ by $g(x^)$ is that g is continuous and the domain should be compact, for example if the domain is $\Bbb R$ and g=x you cant replace max g by $g(x^)$, that is the max is not necessarily an image. – i.a.m Mar 10 '13 at 20:52
0

More generally we have:$$\sup_{x\in A} ( f(x)+g(x))\le \sup_{x\in A} \left( f(x)+\sup_{y\in A} g(y)\right)=\sup_{x\in A} f(x)+\sup_{y\in A} g(y)$$