$(2)$ Applying $\sin2x=2\sin x\cos x,$
$$T_n=\prod_{2\le r\le n}\cos \frac{\pi}{2^r}$$
$$=\frac{\sin\frac{\pi}{2^{n-1}}}{2\sin\frac{\pi}{2^n}}\prod_{2\le r\le n-1}\cos \frac{\pi}{2^r}$$
$$=\frac{\sin\frac{\pi}{2^{n-2}}}{2\cdot2\sin\frac{\pi}{2^n}}\prod_{2\le r\le n-2}\cos \frac{\pi}{2^r}$$
$$=\frac{\sin\frac{\pi}{2^{n-3}}}{2^3\sin\frac{\pi}{2^n}}\prod_{2\le r\le n-3}\cos \frac{\pi}{2^r}$$
$$****$$
$$=\frac{\sin\frac{\pi}{2^{n-s}}}{2^s\sin\frac{\pi}{2^n}}\prod_{2\le r\le n- s}\cos \frac{\pi}{2^r}\text{ where } 0\le s\le n-2$$
Putting $s=n-2,$ $$T_n=\frac{\sin\frac{\pi}{2^{2}}}{2^{n-2}\sin\frac{\pi}{2^n}}\prod_{2\le r\le 2}\cos \frac{\pi}{2^r}=\frac{\sin\frac{\pi}{2^{2}}}{2^{n-2}\sin\frac{\pi}{2^n}}\cos\frac{\pi}{4}=\frac{2\sin\frac{\pi}{4}\cos\frac{\pi}{4}}{2^{n-1}\sin\frac{\pi}{2^n}}=\frac1{2^{n-1}\sin\frac{\pi}{2^n}}$$
Putting $2^n=\frac1y$ as $n\to\infty\implies y\to0$
So, $$\lim_{n\to\infty}\prod_{2\le r\le n}\cos \frac{\pi}{2^r}=\lim_{y\to0}\frac{2y}{\sin \pi y}=\frac2\pi\lim_{y\to0}\frac{\pi y}{\sin \pi y}=\frac2\pi$$
$(1)$ Assuming the $m$th term to be $\text{arccot}(2m^2)$
This is probably how Marvis found the Telescopic sum form of arccot$(2m^2)$
$$\text{ As arccot}x-\text{arccot}y=\text{arccot}\left(\frac{xy+1}{y-x}\right)$$
$$\text{arccot}(2m^2)=\text{arccot}\frac{m+1}m-\text{arccot}\frac m{m-1} $$
The rest is like his solution.