Maybe someone can show why $1472222^{5555} + 14145555^{2228}$ is divisible by $7$? I just have written $$1472222^{5555} + 14145555^{2228}\equiv3^{5555}+4^{2228}\pmod 7$$ but what to do next? I don't see.
-
2https://math.stackexchange.com/questions/279333/what-will-be-the-ones-digit-of-the-remainder-in-left55552222-2222555 – lab bhattacharjee Jun 17 '19 at 09:08
-
2As a now-vanished comment points out, $1472222 \equiv 3 \pmod {7}$, not $4$. Make this correction and the equation works out correctly. – Robert Shore Jun 17 '19 at 09:10
-
1You should have written $1472222^{5555} + 14145555^{2228}\equiv 3^{5555}+4^{2228}\pmod 7$. – Wolfgang Kais Jun 17 '19 at 09:16
3 Answers
Hint: Take a look at $4^1, 4^2, 4^3, \ldots$ modulo $7$. Pretty soon you will find a pattern. Figure out where $5555$ fits in that pattern. Then do the same for $3^1, 3^2, 3^3, \ldots$ and $2228$.
- 204,511
It is not divisible by 7. You can use the modular arithmetic to find this out. There are two main principle from the field that is needed for this. If $a\equiv b \text{ (mod } k)$ then, $a^k \equiv b^k \text{ (mod }k)$ and if $a \equiv b\text{ (mod } k)$ and if $c\equiv d \text{ (mod } k)$ then, $ac \equiv bd \text { (mod } k)$. \begin{equation} \end{equation} Now, \begin{equation} 1472222 \equiv 3 \text { (mod } 7) \end{equation} \begin{equation} 3^{5555} = {(3^{1111})}^5 = {(3^{11})}^{505} = 177147^{505} \end{equation} \begin{equation} 177147 \equiv 5 \text { (mod } 7) \end{equation} Thus, \begin{equation} 5^{505} = (5^5)^{101} =3125^{101} \end{equation} \begin{equation} 3125 \equiv 3 \text { (mod } 7) \end{equation} \begin{equation} 3^{101}=3^{33}\times3^{33}\times3^{33}\times 9 = \underbrace{3^6 \times ...\times 3^6}_\text{15 times} \times 3^{11} \end{equation} By Fermat's little theorem, $a^{p-1}\equiv 1 \text{ (mod }p)$, the above equation can be written as with respect to $\text{ mod 7}$ as \begin{equation} \underbrace{1\times...\times1}_\text{15 times}\times 5 \end{equation} Thus, $1472222^{5555} \equiv 5 \text{ (mod } 7)$ Similarly, \begin{equation} 14145555 \equiv 4 \text{ (mod } 7) \end{equation} \begin{equation} 4^{2228} = 256^{557} \equiv 4^{557} \text{ (mod } 7) = 4^{500}\times 4^{56}\times 4 \end{equation} This can be written as: \begin{equation} 4^{500}\times 4^{56}\times 4\equiv4^{125}\times 2^9 \text{ (mod } 7) \equiv 4^{125} \text{ (mod } 7) \end{equation} \begin{equation} 4^{125} = 4^{120} \times 4^5 \equiv 4^{31} \text{ (mod }7) = 4^{16}\times4^{16}\times \frac{1}{4} \equiv 4 \text{ (mod} 7) \end{equation} Thus, $1472222^{5555}+14145555^{2228} \equiv 2 \text{ (mod } 7)$ and hence not divisible by 7.
I might have done some steps wrong. Please notify me if any. I will be glad to correct them. Thank you.
- 262
$1472222=1470000+2100+70+49+3$, so $1472222\equiv3\pmod7$.
$14145555=14140000+4900+630+21+4$, so $14145555\equiv4\pmod7$.
You can now use Fermat’s little theorem: $x^6\equiv1\pmod7$, if $x$ is not divisible by $7$.
Now $5555\equiv5\pmod6$ and $2228\equiv2\pmod6$, so you have to evaluate $3^5+4^2$ modulo $7$.
But $3\cdot5\equiv1$, so you simply have $5+16=21$, which is indeed congruent to $0$ modulo $7$.p
- 244,946