Given three non-negative $a, b, c$ so that $c$ between $a$ and $b$. Prove that $2\sum\limits_{cyc}a^{3}+ 3abc\geqq 3\sum\limits_{cyc}a^{2}b$
Inspried from: https://math.stackexchange.com/a/3264953/688846, after using Ravi-subs for $$(\sum\limits_{cyc}a^{3}- \sum\limits_{cyc}a^{2}b)\geqq 0$$ by $a= a+ b, b= b+ c, c= c+ a$, equal to $$(\sum\limits_{cyc}a^{3}+ \sum\limits_{cyc}a^{2}b- 2\,abc)\geqq 0$$ And again, we have $$5(a^{3}+ b^{3}+ c^{3}- 3\,abc)= 3(\sum\limits_{cyc}a^{3}+ \sum\limits_{cyc}a^{2}b- 2\,abc)+ (\underbrace{2\sum\limits_{cyc}a^{3}+ 3abc- 3\sum\limits_{cyc}a^{2}b}_{\geqq 0(that's\,all\,we\,need\,to\,prove\,!)})\geqq 0$$