If $\space$ $\forall$ $x \in \Bbb R$, $\space$ $f(f(x))=x^2-x+1$. Find the value of $f(0)$.
I thought that making $f(x)=0$ implies that $f(0)= 0^2 - 0 + 1 = 1$, but i think that this isn't correct, because the $x$ in $f(f(x))$ isn't equal to $f(x)$ .
Any hints?