Given Lukasiewicz axiom system for Classical Propositional Logic (CPL):
(L1) α→(β→α)
(L2) (α→(β→γ))→(α→β)→(α→γ)
(L3) (¬α→¬β)→(β→α)
and the usual Modus Ponens, does my proof of (P→Q)→((Q→R)→(P→R)) below correct? Can someone point out where I made mistake?
(1) (P→R)→((Q→R)→(P→R)) (L1)
(2) (P→(Q→R))→((P→Q)→(P→R)) (L2)
(3) (Q→R)→(P→(Q→R)) (L1)
(4) (P→Q)→(P→R) (2,3 MP)
(5) (Q→R)→(P→R) (1,4 MP)
(6) (P→Q)→((Q→R)→(P→R)) (4,5 MP)