We want to prove that: $$\frac{I}{J}=\frac{\int_0^\pi x^3\ln(\sin x)dx} {\int_0^\pi x^2\ln\left(\sqrt 2\sin x\right)dx}=\frac{3\pi}2$$
First, let's take the $I$ integral and perform the $x\to \pi-x$ substitution:
$$I=\int_0^\pi x^3\ln(\sin x)dx\overset{x\to\pi-x}=\int_0^\pi (\pi^3-3\pi^2x+3\pi x^2-x^3)\ln(\sin x)dx$$
In the $J$ integral we had an additional $\ln \sqrt 2$ for the $x^2$ term, thus we can also add it here:
$$\Rightarrow I=\int_0^\pi (\pi^3-3\pi^2x+3\pi x^2-x^3)\ln(\sin x)dx+ 3\pi(\underbrace{\ln \sqrt 2-\ln \sqrt 2}_{=0})\int_0^\pi x^2 dx$$
$$=\pi^3 \underbrace{\int_0^\pi \ln(\sin x)dx}_{=\mathcal L}-3\pi^2 \underbrace{\int_0^\pi x\ln(\sin x)dx}_{=\mathcal K}+3\pi J-I-{\pi^4}\ln \sqrt 2$$
$$\Rightarrow 2I=\left(\pi^3-\frac{3\pi^3}{2}\right)\int_0^\pi \ln(\sin x)dx+3\pi J-{\pi^4}\ln \sqrt 2$$
$$\require{cancel} 2I=\cancel{\frac{\pi^3}{2}\cdot 2\pi \ln \sqrt 2}+3\pi J-\cancel{\pi^4 \ln \sqrt 2}\Rightarrow I=\frac{3\pi}2J$$
Note that above we used:
$$\mathcal K=\int_0^\pi x\ln(\sin x)dx\overset{x\to \pi-x}=\int_0^\pi (\pi-x)\ln(\sin x)dx$$
$$\Rightarrow \mathcal K=\frac{\pi}{2}\underbrace{\int_0^\pi \ln(\sin x)dx}_{=\mathcal L}=\frac{\pi}{2}\mathcal L$$
$$\mathcal L=\int_0^\pi \ln(\sin x)dx=\int_0^\frac{\pi}{2} \ln(\sin x)dx+\int_0^\frac{\pi}{2} \ln(\cos x)dx$$
$$=\int_0^\frac{\pi}{2} \ln\left(\sin x\cos x\right)=\int_0^\frac{\pi}{2} \ln(\sin 2x)dx-\int_0^\frac{\pi}{2} \ln 2dx$$
$$=\frac12 \underbrace{\int_0^\pi \ln(\sin x) dx}_{=\mathcal L}-\ln\sqrt 2 \int_0^{\pi} dx\Rightarrow \mathcal L=-2\pi \ln\sqrt 2$$