3

I try to calculate the volume inside the ball $\ x^2 + y^2 + z ^2 = 4 $ the outside the cylinder $\ x^2+y^2=2x $ using double integral. Since the shape is symmetric I chose $\ z = 0 $ as bottom limit and the ball is the upper limit. I try to convert to polar form and so I get

$$\ x^2 + y^2 + z ^2 = 4 \Rightarrow z = \sqrt{4-r^2} \\x^2 + y^2 = 2x \Rightarrow r = 2 \cos \theta $$

therefore the integral should be

$$\ 4 \cdot \int_0^{\pi/2} \int_0^{2\cos\theta} (\sqrt{4-r^2}) \ r \ dr \ d \theta$$

but this integral is way to messy for me to calculate. I mean first step of calculating integral for $\ r $ is okay but then the value I get and calculating integral of $\ \theta $ is beyond me and I believe it is beyond the scope of the course. I guess I'm missing something in the process here?

bm1125
  • 1,459
  • This is in fact an interesting classic integral/puzzle. It turns out that the volume depends only on the height of the part of the ball that's left, not on the radius of the ball or the cylinder separately. It's also a duplicate here: https://math.stackexchange.com/questions/109908/given-a-solid-sphere-of-radius-r-remove-a-cylinder-whose-central-axis-goes-thro – Ethan Bolker May 10 '19 at 15:57

4 Answers4

3

Let $I = \int_0^{\pi/2} \int_0^{2\cos\theta} (\sqrt{4-r^2}) \ r \ dr \ d \theta$

$I = \frac{-1}{2}\int_0^{\pi/2} \int_0^{2\cos\theta} (\sqrt{4-r^2}) \ d(4-r^2) \ d \theta$

$I = \frac{-1}{2}.\frac{2}{3}\int_0^{\pi/2}\big[(4-r^2)^{3/2}\big]^{2cos\theta}_0d\theta$

$I = \frac{-1}{2}.\frac{2}{3}\int_0^{\pi/2}\big[(4-4cos^2\theta)^{3/2} - 4^{3/2}\big]d\theta$

$I = \frac{-1}{3}.2^3\int_0^{\pi/2}\big[(sin^2\theta)^{3/2} - 1\big]d\theta$

$I = \frac{-1}{3}.2^3\int_0^{\pi/2}\big[(sin^3\theta)- 1\big]d\theta$

$\bigg[ \int^{\pi/2}_0sin^mxdx = \frac{m-1}{m}.\frac{m-3}{m-2}...1 \bigg]$, if m is odd

$I = \frac{-2^3}{3}\bigg[\big[\frac{2}{3}.1\big] -\frac{\pi}{2}\bigg]$

Thus, $I = \frac{8}{18}[3\pi - 4] = \frac{4}{9}[3\pi - 4]$

Can you proceed now?

19aksh
  • 12,835
3

Of course I cannot comment directly about the requirements for your class, but in my Vector Calculus class I would expect the students to be able to calculate that integral without much issue.

You have \begin{align} \int_0^{\pi/2} \int_0^{2\cos\theta} (\sqrt{4-r^2}) \ r \ dr \ d \theta &=-\frac13\int_0^{\pi/2} [(4-4\cos^2\theta)^{3/2}- 4^{3/2}]\,d\theta\\ &=\frac83\,\int_0^{\pi/2}[1-(1-\cos^2\theta)^{3/2}]\,d\theta\\ &=\frac83\,\int_0^{\pi/2}[1-\sin^3\theta]\,d\theta\\ &=\frac83\,\left[\frac\pi2-\int_0^{\pi/2}(1-\cos^2\theta)\,\sin\theta\,d\theta \right]\\ &=\frac83\,\left[\frac\pi2-1-\left.\frac{\cos^3\theta}3\right|_0^{\pi/2} \right]\\ &=\frac83\,\left[\frac\pi2-1-\frac13(0-1) \right]\\ &=\frac83\,\left[\frac\pi2-\frac23\right]\\ &=\frac49(3\pi-4) \end{align}

Martin Argerami
  • 217,281
2

You've correctly set up the integral representing the volume of the inside cylinder. The scalar $4$ on the left represents

  1. the reflectional symmetry about the $xy$-plane; and
  2. the reflectional symmetry about the $yz$-plane.

\begin{align} & 4 \int_0^{\pi/2} \int_0^{2\cos\theta} (\sqrt{4-r^2}) \ r \ dr \ d \theta \\ =& 2 \int_0^{\pi/2} \int_0^{2\cos\theta} (\sqrt{4-r^2}) \, d(r^2) \ d \theta \\ =& 2 \int_0^{\pi/2} \left[- \frac{(4-r^2)^{3/2}}{3/2} \right]_0^{2\cos\theta} \, d(r^2) \ d \theta \\ =& \frac{32}{3} \int_0^{\pi/2} (1-\sin^3\theta) \, d \theta \\ =& \frac{32}{3} \cdot \frac{\pi}{2} - \frac{32}{3} \cdot \frac{2}{3} \\ =& \frac{16(3\pi - 4)}{9} \end{align}

The second last equality is due to Wallis's integrals.

  • Thanks for the clear answer! Could you explain to me the fourth line? How does $\ - \frac{(4-(2cos\theta)^2)^{3/2}}{3/2} + \frac{(4-0)^{3/2}}{3/2} = \frac{32}{3} \int_0^{\pi/2}(1- \sin ^3 \theta) $ ? – bm1125 May 10 '19 at 09:54
  • Oh and also , I just noticed your wrote $\ d(r^2) $ in the second line instead of $\ r \cdot dr $ , why's that? – bm1125 May 10 '19 at 09:59
  • 3
    @bm1125 $$\ - \frac{(4-(2\cos\theta)^2)^{3/2}}{3/2} + \frac{(4-0)^{3/2}}{3/2} = -\frac23 \left[ (4 - 4\cos^2\theta)^{3/2} - 4^{3/2} \right] = -\frac23 [(4\sin^2\theta)^{3/2} - 4^{3/2}]$$ $$=-\frac23[8\sin^3\theta - 8] = \frac{16}{3}(1-\sin^3\theta)$$ I wrote $d(r^2)$ so as to make my writing concise by avoiding routine stuff like "let $t = r^2$, then $dt = 2r dr$, when $r = 0$, $t = 0$"; when $r = 2\cos\theta$, $t = 4\cos^2\theta$ – GNUSupporter 8964民主女神 地下教會 May 10 '19 at 10:03
2

Let's call $V_o$=volume outside cylinder and $V_i$=volume inside cylinder. Then volume you request is volume ball ($\frac{4}{3}\pi\,2^3$) minus$V_i$, that is, $V_o=\frac{32}{3}\pi-V_i$.

By symmetry

$$V_i=2\int\int_{\{(x,y)\,|\,x^2+y^2=2x\}}\int_{z=0}^{z=\sqrt{4-x^2-y^2}}1dz\,dx\,dy$$

Doing the first integral and changing to polar variables and even function in $\theta$ variable we obtain

$$V_i=4\int_{0}^{\pi/2}\int_0^{2\,\cos\theta}r\,\sqrt{4-r^2}\,dr\,d\theta=\frac{16(3\pi - 4)}{9}$$

as colleagues posted before. Finally, volume desired is

$$V_o=\frac{32}{3}\pi-\frac{16(3\pi - 4)}{9}=\frac{4}{9}\left(12\,\pi+1\right)$$

popi
  • 1,784