0

Give an expression for an inverse of a matrix, i.e., $B^{-1}$, using only $I, B, B^2$.

This seems like it shouldn't be too difficult but I am unable to find anything close.

Montes
  • 19

1 Answers1

1

If you want to express $M^{-1}$ by a linear combination of $I_n$, $M$ and $M^2$, this work if $n\leq 3$ using Cayley–Hamilton theorem. But its not possible if $n\geq 4$. Take $$M=\left(\begin{array}{cccc} 1&1&0&0\\ 0&1&1&0\\ 0&0&1&1\\ 0&0&0&1\\ \end{array}\right)$$

Then $$M^2=\left(\begin{array}{cccc} 1&2&1&0\\ 0&1&2&1\\ 0&0&1&2\\ 0&0&0&1\\ \end{array}\right)$$

So $Vect(I_4,M,M^2)\subset\{A\in M_4(\Bbb{R})~|~A_{1,4}=0\}$.

But $$M^{-1}=\left(\begin{array}{cccc} 1&-1&1&-1\\ 0&1&-1&1\\ 0&0&1&-1\\ 0&0&0&1\\ \end{array}\right)$$

So $M^{-1}$ is not a linear combination of $I_4,M$ and $M^2$.